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Abstract— Multi-tiered Parallel I/O systems that combine traditional HDDs with emerging SSDs mitigate the cost burden of SSDs while
benefiting from their superior I/O performance. While a multi-tiered parallel I/O system is promising for data-intensive applications in
high-performance (HPC) domains, placing data on each tier of the system to achieve high I/O performance remains a challenge. In
this paper, we propose a cost-aware region-level (CARL) data placement scheme in multi-tiered parallel I/O systems. CARL divides
a large file into several small regions, and then places regions on different types of servers based on region access costs. CARL
includes a static policy S-CARL and a dynamic policy D-CARL. For applications whose I/O access patterns are completely known,
S-CARL calculates the region costs within the entire workload duration, and uses a static data placement scheme to selectively place
regions on the proper servers. To adapt to applications whose access patterns are unknown in advance, D-CARL uses a dynamic data
placement scheme which migrates data among different servers within each time window. We have implemented CARL under MPI-IO
library and OrangeFS parallel file system environment. Our evaluation with representative benchmarks and an application shows that
CARL is both feasible and able to improve I/O performance significantly.

Index Terms—Parallel I/O System; Parallel File system; Data Placement; Solid State Drive
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1 INTRODUCTION

TODAY many of the applications in high-performance
computing (HPC) domains are becoming increas-

ingly data-intensive [1]. To satisfy the huge data require-
ments of such applications, HPC clusters use parallel
I/O systems, which integrate multiple servers with a
parallel file system(PFS) [2]–[5], to provide efficient stor-
age accesses. However, the performance of PFSs is still
severely impacted by application I/O characteristics [6]–
[8]. For example, although PFSs are effective to improve
I/O system performance for large requests, they fail to
perform well for non-contiguous small requests. There-
fore, a large body of studies are devoted to improve
parallel I/O system performance [9]–[11].

Newly emerging storage technologies, such as flash-
based solid state drives (SSD), are becoming increasingly
popular in I/O system designs. When compared to hard
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disk drives (HDD), SSDs have higher storage density,
lower energy consumption, a smaller thermal footprint,
and orders of magnitude higher performance [12]. SSD is
an ideal storage medium for building high performance
I/O systems [13]. However, the high price per gigabyte
of SSDs prevents them from being utilized to build an
I/O system completely based on SSDs [14]. Hence, a
multi-tiered parallel I/O system, which consists of both
HDD-based file servers (HServer) and SSD-based file
servers (SServer), is one of the practical ways to address
the I/O bottleneck problem [15]–[18].

While a multi-tied HDD-SSD architecture is cost ef-
fective, the performance of the multi-tiered I/O system
relies on an efficient data placement scheme. However,
I/O access patterns and storage system configurations
become more and more complex, how to place data in
a multi-tiered parallel I/O system is challenging.

First, complicated I/O access patterns may result in
inefficient data placement. A naive data placement ap-
proach is to place performance-critical data on SServers.
For example, small requests can benefits more from
SSDs, hence it tends to place data with small requests
on SServers. However, previous studies have shown that
applications can send I/O requests with complicated
access patterns [7], [19], in terms of request size, type,
frequency, and concurrency. A given data placement
scheme can benefit requests with one given access pat-
tern, but not necessarily lead to the optimal performance
for other patterns. If we blindly place data on a tier with-
out carefully considering the I/O access characteristics,
the overall I/O system performance will be degraded.

Second, storage system configurations can also affect
the efficiency of the data placement schemes. Generally,
multi-tier parallel I/O systems may have different sys-
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tem configurations in terms of server performance and
number of servers in each storage tier. A data placement
policy works well under a special system configuration
does not yield performance benefits for other configu-
rations. For example, placing the requested data of a
large file request on SServers is favorable if SServers
have higher aggregated I/O performance than HServers.
However, when a multi-tiered system has many more
HServers than SServers, it is better to place data on
HServers because of their higher I/O parallelism. As a
result, an ideal data placement for a multi-tiered parallel
I/O system must consider storage system configurations
to determine the proper placement of file data.

Currently, plenty of work has been done on data place-
ment policies in SSD-based hybrid I/O systems [14],
[20]–[22]. These methods are very helpful, however, to
the best of our knowledge, the existing work is deployed
in a single file server, without considering data place-
ment optimization in a multi-tiered parallel I/O system.

In this paper, we propose a cost-aware region-level
data placement scheme (CARL) for a multi-tiered paral-
lel I/O system combining both HServers and SServers.
The basic idea of CARL is to divide a large file into
several small regions, and then places file regions on
different types of file servers based on the region access
costs. By selectively placing fine-grained region instead
of the entire file on the proper server tier, CARL can
benefit various I/O patterns and system configurations.
CARL consists of two data placement polices for dif-
ferent applications. First, for applications whose I/O
access patterns are completely known, CARL calculates
the region costs according to data access patterns within
the entire workload duration, and uses a static data
placement scheme to selectively place file regions with
high access costs on proper servers with better aggre-
gated I/O performance. Second, CARL also utilizes a
dynamic data placement scheme which leverages data
migration to place data on different types of servers
based on workload changes if we have no a prior
knowledge about the application’s access patterns. As
opposed to the static data placement scheme [15], such
a dynamic data placement is more realistic and can adapt
to applications with unknown access patterns.

Specifically, this study makes the following contribu-
tions.

• We introduce a data access cost model for parallel
file systems, which can evaluate the access time
of a request with different access patterns and on
different storage media.

• For applications with I/O access patterns are com-
pletely known in advance, we present a static
region-level data placement scheme based on the
cost model, which divides files into regions and
selectively places regions on proper underlying
servers.

• For applications whose I/O access patterns are un-
known, we propose a dynamic region-level data
placement scheme, which considers data migration

among different types of servers based on the region
access costs.

• We implement and integrate the cost-aware region-
level data placement scheme into MPI-IO library
and OrangeFS, and evaluate the performance of
CARL with extensive tests. Experimental results
show that CARL can significantly improve the
multi-tiered I/O system performance.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 introduces the data
access cost model used in the proposed data placement
scheme. Section 4 and Section 5 describe the static and
dynamic region-level data placement policy respectively.
Section 6 evaluates the performance of CARL. Finally,
section 7 concludes the paper.

2 RELATED WORK

In this section, we focus on previous studies in im-
proving parallel I/O system performance: I/O soft-
ware optimization and data placement in homoge-
neous/heterogeneous I/O systems.

2.1 I/O Software Optimization Approaches
Numerous efforts have focused on reorganizing I/O
requests to produce large continuous data accesses. A
lot of work has been done at the I/O middleware
layer, including data sieving [10], list I/O [11], datatype
I/O [23], two-phase I/O [24], and collective I/O [10].
Data sieving [10] techniques integrate multiple noncon-
tiguous small requests into a larger contiguous chunk,
possibly fetched with additional data (hole). List I/O [11]
and datatype I/O [23] allow users to merge multiple
I/O requests with different patterns into a single I/O
routine. While list I/O is used to handle more general
data access cases, datatype I/O is designed to access
data with certain regularity. Two-phase I/O [24] and
collective I/O [10] are proposed to rearrange concurrent
I/O accesses among a group of processes.

2.2 Data placement in Homogeneous I/O systems
Optimizing data placement is another effective approach
to improve I/O performance. Parallel file systems usu-
ally provide several data placement policies for differ-
ent I/O workloads [6]. Data partition [25], [26], data
migration [27], [28], and data replication [6], [8], [29],
[30] techniques are commonly used to organize data
layout on file servers consistent with I/O workloads.
Furthermore, file stripe resizing technique is widely
used to optimize the data placement of parallel I/O
systems [7], [31]. PARLO is designed for accelerating
queries on scientific datasets by applying user specified
data placement optimizations [32]. Tantisiriroj et al. [33]
use HDFS-specific layout rearrangement to improve the
performance of PVFS [34]. However, all these studies are
designed for homogeneous I/O systems, and cannot be
applied to heterogeneous environments.
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2.3 Data placement in Heterogeneous I/O systems
As SSDs exhibit obvious performance advantages over
HDDs, they are widely deployed in parallel I/O systems,
either as a cache of traditional HDDs [35], [36] or as
a hybrid storage device [14], [18], [20], [21]. However,
most of these approaches are made on a single file server.
In contrast to these studies, our work is designed for a
parallel I/O system.

Previous studies [37]–[41] use the global data infor-
mation and SSDs in a similar way to optimize data
placement in a parallel I/O environment. However, both
SSD-based servers and HDD-based servers are used as
persistent storage and the system only includes one
storage tier. While recent studies also focus on the data
placement in a multi-tiered parallel I/O system [9], [42],
they use SSD-based server as a caching tier as apposed
to our work that uses them as a storage tire, one of
promising approaches to utilize high-performance SSDs

3 DATA ACCESS COST MODEL

To guide the region-level data placement, we propose
a cost model to calculate the data access time on a
parallel file system. The corresponding parameters are
listed in Table 1. The model not only considers applica-
tion’s access patterns (e.g., request size, offset, number of
processes), but also takes storage system configurations
(e.g., number of servers, server type, storage startup time
and storage transfer time of each server) into account to
overcome the challenges in data placements in multi-
tiered parallel I/O systems.

In the cost model, we assume a file request is served
either by HSevers or SServers, each organized by a paral-
lel file system (PFS) in a multi-tiered I/O system. We also
assume the file is distributed on the underlying servers
in a round-robin fashion which is the most popular data
layout method in a PFS [8]. We calculate the data access
cost on different types of servers respectively as follows.

3.1 Data Access Cost on HServers
For each file request req arriving at and served by
HServers, the access cost is defined as

TH = Ths + Tht (1)

The cost is the completion time for each file request,
which consists of two parts: storage startup time Ths and
storage transfer time Tht. The storage startup time means
the time consumption due to disk seek and software
overhead on the file servers. Storage transfer time means
the time spent on actual data read/write from/to an
HDD disk.

3.1.1 Storage Startup Time
A parallel file request req may involve multiple sub-
requests on m (1 � m � M ) HServers, the startup time
of req is determined by the maximum of all its sub-
requests. We first calculate the startup time of a single

TABLE 1: Parameters (Pars in short) in cost analysis
model.

Pars Description

M Number of HDD servers
N Number of SSD servers
str Stripe size of parallel file system
o Offset of request req
s Size of request req
p Number of processes of the parallel application
αh Average startup time on HServer
βh Unit data transfer time on HServer
αsr Average startup time for read on SServer
βsr Unit data transfer time for read on SServer
αsw Average startup time for write on SServer
βsw Unit data transfer time for write on SServer

sub-request, then describe the startup time of the entire
file request.

Let α denote the startup time of a sub-request on a
single HServer, then α mainly depends on the number
of seeks on the disk. Because an HServer will randomly
serve sub-requests from multiple processes of an appli-
cation [43], α is a random variable. Assume α follows
a uniform distribution on [a, b], then its probability
function is

P (α < x) =
x− a

b− a
, a � x � b (2)

where a and b are the minimal and maximal startup time
on an HServer, respectively.

Let X denote the startup time of the entire file request
req, then we haveX = max(α1, α2, · · · , αm), where αi (
1 � i � m) has an independent identical distribution as
α. The probability density function of X is

f(x) =
m× (x− a)m−1

(b− a)m
, a � x � b (3)

Hence, the startup time of the entire file request is

Ths =

∫ b

a

xf(x)dx = a+
m

m+ 1
(b− a) (4)

An HServer only needs one seek operation to serve
the sub-requests in the best case, thus a = αh. But in
the worst case, there are p seeks since an HServer has to
concurrently serve p processes, thus b = p ∗ αh. Given a
file request req with offset o and size s, the serial number
of the involved beginning and ending stripe are B =
� o
str � and E = � o+s

str �. Let c = E −B + 1, thus

m =

{
c, if c < M

M, otherwise
(5)

Based on the value of a, b, and m, we can obtain the
cost of Ths according to Equation (4).
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Fig. 1: Four cases where a file request involves different
number of sub-requests.

3.1.2 Storage Transfer Time

The storage transfer time Tht of request req should be
the maximum of all its m sub-requests. Since each sub-
request’s data transfer time is proportional to the data
size on the HServer, we first calculate the data size
of each sub-request, then describe Tt for the entire file
request based on the maximal sub-request size.

Given a file request req with offset o and size s, the
size of the beginning and ending stripe fragment can
be calculated as b = str − o%str and e = (o + s)%str,
as shown in Fig. 1. Let r = �E−B

M � − 1 and s(i) be the
sub-request size on server i (1 ≤ i ≤ m), then sm =
max{s(1), s(2), ..., s(m)} can be calculated as follows:

sm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
s, c = 1

max{b+ e, str}+ r ∗ str, (c− 1)%M = 0

max{b, e}+ r ∗ str, (c− 1)%M = 1

(r + 1) ∗ str, otherwise

(6)

Based on the value of sm, the storage transfer time can
be calculated as

Tht = sm ∗ βh (7)

With Equation (4) and Equation (7), TH of each file
request in Equation (1) can be obtained.

3.2 Data Access Cost on SServers

For each file request served by SServers, we calculate
its access cost in a similar way as that of HServers but
with two modifications. First, we count request type
(read or write) in the cost since SSDs usually have
a much lower write performance because of garbage
collection and wear leveling [12]. Second, we use sub-
request distribution on SServers rather than HServers to
derive the cost. The access cost is defined as

TS = Tss + Tst (8)

where Tss means the storage startup time and Tst refers
to the storage transfer time on SServers.

3.2.1 Storage Startup Time
We assume that n (1 � n � N ) is the number of
involved SServers in the data access of file request req,
then n can be calculated similarly as m discussed in
Subsection 3.1.1. Due to space limitation we omit the
calculation here. Based on the value of n, the storage
startup time on SServers can be calculated as

Tss = a+
n

n+ 1
(b− a) (9)

where a and b are the minimal and maximal startup time
on an SServer, respectively.

If req is a read request, then a = αsr and b = p ∗ αsr.
Here we set a and b with these values because each
SServer only needs one seek operation to serve a con-
tinuous request in the best case and needs p startup
operations to concurrently serve all the p processes in
the worst case. Otherwise, a = αsw and b = p ∗αsw for a
write request.

3.2.2 Storage Transfer Time
The storage transfer time Tst of a request is the max-
imal transfer time of all its n sub-requests. Given a
file request req with offset o and size s, the maximal
sub-request size can be calculated similarly as that of
maximal sub-request size on HServers, as discussed in
Subsection 3.1.2. Let sn be the maximal sub-request size,
then Tst can be calculated as follows:

Tst =

{
sn ∗ βsr, if req is a read
sn ∗ βsw, otherwise

(10)

With Equation (9) and Equation (10), TS of each file
request in Equation (8) can be obtained.

3.3 Discussion
The proposed model is based on our previous work [15],
but there are three major differences. First, from the ap-
plication’s perspective, our model considers the number
of processes, which affects the storage startup time of
a file request. Second, from the viewpoint of storage,
our model also factors data startup time in the data
access times of SServers while the previous model is
an ideal case without such consideration. Third, our
model differs read from write performance of SServers
while the previous work regards them as the same.
By considering these differences, our model can more
accurately describe the performance of a practical I/O
system.

4 STATIC REGION-LEVEL DATA PLACEMENT

The proposed cost model can be used to determine
which type of servers is the proper storage tier for a
given file request. If we have a prior knowledge of
all requests on a large parallel file, we can determine
which parts of a file should be placed on which type of
servers to achieve optimal I/O performance. Fortunately,
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Fig. 2: Overview of system using S-CARL.

many data-intensive applications have predictable data
access patterns [8], [44], thus I/O behavior can be ob-
tained from previous runs. Based on this observation, the
proposed static cost-aware region-level (S-CARL) data
layout scheme divides a large file into several small
regions, and then selectively places them on proper
servers based on the region cost analysis.

4.1 System Overview
Fig. 2 shows the high performance cluster systems for
which S-CARL is designed. In these systems, application
processes on compute nodes access the data on file
servers by calling the MPI-IO library. S-CARL resides
in MPI-IO library and is responsible for placing data
on the underlying HServers and SServers, which are
accessed by a parallel file system respectively. S-CARL
is independent of the file system; thus allowing the
scheme to be portable and easily adopted to different
file systems, such as PVFS [2], Lustre [3], and GPFS [4].

Fig. 3 shows the procedure of the static region-level
data placement scheme, which consists of three phases.
In the “Tracing Phase”, the run-time statistics of I/O
accesses are collected by I/O Collector during the appli-
cations’ first execution. In the “Analysis Phase”, Region
Analyzer divides the file into regions and uses the data
access cost model to estimate performance gains for file
regions if they are placed on SServers over HServers. The
performance gains are then used to generate a region
gain table (RGT). In the “Placing Phase”, Region Placer
places file regions on the underlying servers according
to RGT. In subsequent runs of the application, Region
Redirector is added at the I/O middleware layer (MPI-IO
library) to forward I/O requests to appropriate underly-
ing HServers or SServers. Through these three phases, S-
CARL reduces I/O time of the application in subsequent
runs.

4.2 I/O Collector
I/O Collector is responsible for capturing run-time I/O
access information of parallel applications. While there

Application’s 
execution

Application’s 
execution

I/O trace

Region Gain 
Table (RGT)

Regions in 
HServers

Regions in 
SServers

Cost 
Model

Placement / Region 
Redirection

Tracing Phase Placing PhaseAnalysis Phase

Regions in 
HServers

Fig. 3: The procedure of data placement scheme.

are other tools can be used, we use IOSIG [45] to
obtain the information required by S-CARL. IOSIG is a
pluggable library of MPI-IO, which utilizes the Profiling
MPI interfaces (PMPI) to trace standard MPI-IO calls.
After running applications with IOSIG, S-CARL can get
the required information of file requests, such as process
ID, MPI rank, file descriptor, type of operation, offset,
request size, and time stamp.

4.3 Region Analyzer
Region Analyzer evaluates the performance gain of plac-
ing a file region on SServers over HServers. The basic
approach includes the following three steps.

First, the address space of the file is logically divided
into regions by a fixed chunk size (e.g. 64MB or 128MB)
for further analysis. The smaller the region size, the more
efficient will be the data placement. However, operating
at the region level incurs metadata overhead to keep
track of region locations and other statistics and this
overhead is inversely proportional to the region size. We
choose a region size of 64MB with an acceptable system
overhead.

Second, I/O requests located on each region are iden-
tified according to the I/O traces. If the start offset of an
I/O request falls into the region, the request is counted
toward the region. If the request spans across several
regions, then each subpart of the request contributes to
the region it belongs to.

Third, the performance gain of placing each region on
SServers instead of HServers is estimated. Let n(i) de-
note the number of requests located on the ith file region,
T j
H and T j

S denote the data access cost taken by HServers
and SServers to serve the jth request respectively, which
are calculated using Equation (1) and (8), then the gain
gi for the ith file region is defined by

gi =

n(i)∑
j=1

(T j
H − T j

S) (11)

To make appropriate data placement decisions, the
cost gains of all regions are stored in a global region gain
table (RGT), which will be used by Region Placer. Since
RGT comprehensively considers the key factors in data
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Algorithm 1 The region-level data placement algorithm

Require: I/O Request: r, Region gain table: RGT , Region map
table: RMT .

1: /* Lookup r in RMT , return a mapping entry reg*/
2: reg ← RMT lookup(r)
3: if reg != NULL then
4: if reg.tier == SServers then
5: Forward r to reg on SServers
6: else
7: Forward r to reg on HServers
8: end if
9: else

10: /* Otherwise, place data to a new region */
11: c ← Calculate the free capacity of SServers
12: Let k = c/region size
13: /* Find top k regions in RGT but not in RMT */
14: Reg[k] ← top k({x : x ∈ RGT ∧ x �∈ RMT})
15: /* Find a matched region in Reg[k] */
16: for each reg ∈ Reg[k] do
17: if r in reg and reg.gain > 0 then
18: reg ← Allocate a region from SServers
19: Forward r to reg on SServers
20: end if
21: end for
22: if no matched region found in Reg[k] then
23: reg ← Allocate a region from HServers
24: Forward r to reg on HServers
25: end if
26: Add an entry of reg into RMT
27: end if

accesses, such as number of requests, request frequency,
request size, and I/O parallelism of underlying servers,
it can effectively guide the data placement in a multi-
tiered I/O system.

4.4 Region Placer
Region Placer carries out the actual region placement on
underlying HServers or SServers based on three fac-
tors: (1) the available free space on SServers, indicating
whether SServers can accommodate the current region,
(2) the performance gain in RGT for current region,
indicating whether I/O performance can be improved
if it is placed on SServers, (3) the rank of the region
performance gain, indicating whether it incurs more
performance gain than other regions if it is located on
SServers.

Algorithm 1 shows the data placement procedure for
an incoming I/O request. First, a global region map table
RMT, which keeps the location mapping information
between a logical file region and a target region on
HServers or SServers, is initialized. RMT is empty at
the beginning, and will be continuously updated as new
regions are allocated to the file. Upon a file write request,
the algorithm checks if the request falls into a region that
has been allocated by consulting RMT. If yes, the request
is forwarded to the allocated region. Otherwise, a new
region on SServers or HServers will be allocated to hold
the request and the address of the allocated region is
stored in the corresponding entry of RMT. Suppose there
are k free regions on SServers, and the incoming request

File

Region

File
Servers

HServers SServers

… … … …

Reg. 0 Reg. 4Reg. 1 Reg. 2 Reg. 3

Fig. 4: An example of the static region-level data place-
ment scheme.

r belongs to logical file region reg, then the algorithm
will allocate a target region from SServers for r only
when both of the following conditions are true: (1) the
performance gain of region reg is positive, (2) region reg
is the top-k unallocated regions in the descending order
of their performance gains. Otherwise, the algorithm will
allocate a free region on HServers to place the requested
data. As the data location of a file does not change
during the application’s run, we call it is a static region-
level data placement scheme.

Fig. 4 shows an example of the proposed data place-
ment scheme. In this example, the file is divided into five
regions, each having a different access cost. Among all
regions, region 2 and 4 have higher positive region gains
than others. As there are two free regions on SServers,
region 2 and 4 are placed on SServers and the remaining
regions are placed on HServers. Since the destination for
each region is optimized according to the data access
gains on them, the proposed data placement scheme
can serve all file requests with high performance. The
region-level data placement scheme is a fine-grained
optimization, and it is more suitable for applications
with complicated data access patterns.

4.5 Region Redirector

Region redirector in the MPI-IO library is responsible for
redirecting user’s I/O requests to underlying HServers
or SServers. Upon a file request, Region Redirector first
determines the requested logical file regions based on
the request offset, request size, and region size. Then
it examines RMT with the logical file regions to find
the target regions. Finally, the read/write operations
will be forwarded to the target regions on underlying
HServers or SServers. All the operations are transparent
to applications. In this way, SServers, which have a small
storage space, can be intelligently utilized according to
the I/O patterns.
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5 THE DYNAMIC REGION-LEVEL DATA
PLACEMENT

In the previous section, we described a static region-level
data placement in a multi-tiered parallel I/O system.
While effective to optimize I/O performance, the static
tiering technique is based on the complete knowledge
of I/O workloads of applications. However, in practical
systems, this assumption may be unrealistic, and data
placement scheme needs to adapt dynamically to run-
time changes of workloads.

5.1 Basic Idea of Dynamic Placement

To address this issue, we propose a dynamic region-
level data placement scheme (D-CARL), which leverages
data migration to improve parallel I/O performance at
the runtime. The basic idea of D-CARL is to divide the
entire workload duration into multiple time windows,
and place file regions on proper servers based on the
workload within each window. As workloads on certain
file regions may change as time elapses, placing them
on the old type of servers may offset the parallel I/O
performance. In such cases, D-CARL will migrate them
from the old locations to the new storage tiers accord-
ingly. The efficiency of the data migration depends on
the locality of the workloads. Fortunately, workloads of
many applications show locality characteristics [17], [18].
Unlike S-CARL that does not change file region locations
duration the entire observation window, such a dynamic
placement scheme can adaptively accommodate varying
I/O workloads.

5.2 Design of D-CARL

5.2.1 Time Window Scale
A first issue is the time scale at which file regions move
across different types of servers. One choice is to place
regions once during system instantiation or move them
at coarse grain intervals of the order of hours or days.
However, previous studies show that I/O workload
changes typically most of the time [46], this semi-static
placement is not the optimal. The alternate choice is
to move region at intervals on the order of minutes
or hours. Such a system exploits variations in region
workload to improve its efficiency. Dynamic migration
of the regions into the proper storage tier (HServers or
SServers) when required enables cost-effective use of the
resources. In this study, we choose to perform dynamic
data placement with a time window of 10 minutes,
which depends on the workloads and can ensure the
migration overhead does not overwhelm its benefit.
Previous study also uses a time window of the order
of minutes [18].

5.2.2 Data Migration Algorithm
The second concern is how to determine which data need
to migrate and where to migrate. As we discussed, since

Algorithm 2 The dynamic region migration algorithm

Require: Region gain table: RGT , Region map table: RMT .
1: outgoinglist ← ∅
2: incominglist ← ∅
3: /* Save top-k ranked regions in the last time window */
4: Reg las[k] ← top k({x : x ∈ RGT})
5: Update RGT based on I/O accesses in the current time

window
6: /* Find top-k ranked regions in the current time window

*/
7: Reg cur[k] ← top k({x : x ∈ RGT})
8: /* Construct the outgoing list */
9: for each reg ∈ Reg las[k] do

10: tier ← RMT lookup tier(reg)
11: if tier == SServers and reg /∈ Reg cur[k] then
12: outgoinglist

⋃{reg}
13: end if
14: end for
15: /* Construct the incoming list */
16: for each reg ∈ Reg cur[k] do
17: tier ← RMT lookup tier(reg)
18: if tier! = SServers then
19: ingoinglist

⋃{reg}
20: end if
21: end for

region-level data placement is beneficial to I/O perfor-
mance, D-CARL migrates data at the region granularity.
From the viewpoint of SServers, there are two types
of regions that need to be migrated. The first are the
”outgoing” regions which must be moved to HServers;
they are no longer beneficial enough to be on SServers.
The second are the ”incoming” regions which now have
a sufficiently high performance gain to be migrated to
SServers but are not currently on them. These constitute
the regions to be accessed to ensure high parallel I/O
performance in the future.

Algorithm 2 shows the data migration algorithm
which is responsible for constructing the migration plan
and scheduling the migration. It is executed at the end
of each time window. First, the global region gain table
RGT and region map table RMT are initialized. RMT
is empty at the beginning and continuously updated as
new regions are allocated for the file. Then, at the end
of each time window, D-CARL updates RGT based on
the recent data accesses in the last time window. Assume
that SServers have k regions, the outgoing and incoming
lists are then created based on the top-k entries in RGT
and contents in RMT. The algorithm walks through each
region on SServers by looking up RMT, creating an entry
in the outgoing list for each region that is no longer in
the top-k entries in RGT. Then, it walks through each
entry in the top-k ranked regions, creating an entry in the
incoming list for each region which is currently not on
SServers. Once these two steps are completed, the new
migration plan is obtained. The algorithm begins with no
prior knowledge about the workload, then periodically
gathers I/O access information, learns workload behav-
ior and makes migration plan to appropriate locations
in response to workload characteristics.
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5.2.3 Data Migrator
The third issue is how to migrate data between HServers
and SServers. The actual data migration operation is
carried out by Data Migrator at the end of each time
window. It includes two distinct phases: SServers to
HServers and vice versa. These two phases are treated
differently. The first phase, SServers to HServers, ad-
dresses operations in the outgoing list of the new place-
ment plan. For each entry in the list, the data movement
operation is followed by coping data from SServers to
HServers and updating the corresponding entry in RMT.
The second is HServers to SServers phase, which handles
the incoming list in a similar way and updates the new
entry in RMT.

5.3 Implementation
We implement D-CARL in MPI-IO library MPICH2 and
parallel file system OrangeFS. The primary challenges
are discussed below.

5.3.1 Key Data Structures
In the proposed placement scheme, RGT and RMT are
two key mapping tables to store region performance
gains and mapping relationship between logical file
regions and target file regions. We use Berkeley DB [47]
to implement RGT and RMT, each being a database file
in a standalone space on SServers. The Berkeley DB is
configured as a hash table, and each record is a key-
value pair. For RGT, the key is the RegionID encoded
with application name, number of processes, rank of
the process, original file name, and region sequence; the
value contains the performance gain. For RMT, the key
is also RegionID but the value is the target region infor-
mation. For a parallel application, there may be multiple
processes accessing the two shared tables at the same
time, which may lead to access contention. However,
with the light-weighted database, the contention issue
is addressed and metadata operations are performed
efficiently. Additionally, we use a list to maintain most
frequently accessed entries for each table in memory to
speed up lookups.

5.3.2 I/O Redirection in MPI-IO
We modify the MPI library so that the mapping ta-
ble RMT is loaded with MPI_Init() and unloaded
with MPI_Finalize(). To keep track of the loca-
tion of each original logical file region, RMT is stored
in a file in the same directory of the MPI program.
The mapping table entries are also hashed in memory
for efficient table lookup. Changes made to the map-
ping entries in memory are synchronously written to
the storage to survive power failures. We also modify
the MPI_File_read/write() (and other variants of
read/write), so that the user requests can be atomically
forwarded to the alternative file servers. In more detail,
if the requested regions are found in RMT, the logical
file regions will be translated to the target regions. Then,

the following read/write operations will be forwarded
to the target regions on underlying servers.

5.3.3 Data Migration Issues

To avoid interfering with the normal MPI I/O opera-
tions, D-CARL creates a new I/O helper thread in each
process to handle the background data movement. This
I/O thread is created when the process opens the first file
by calling MPI_File_open and destroyed after the last
file is closed with MPI_File_close. While each pro-
cess can have multiple files opened, only one migration
thread is created. Once the I/O thread is created, it enters
an infinite loop to perform data migration operations
until it is signaled for termination. It communicates with
the main thread through shared variables that store file
access information, such as file handler, offset, etc.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of CARL
through extensive experiments. Before discussing the ex-
periment results, we will first describe the experimental
setup.

6.1 Experimental Setup

We conduct the experiments on a 65-node SUN
Fire Linux cluster, where each node has two AMD
Opteron(tm) processors, 8GB memory, and a 250GB
HDD. 16 nodes are equipped with additional OCZ-
REVODRIVE 100GB SSD. All nodes are equipped with
Gigabit Ethernet interconnection. The operating system
is Ubuntu 13.04, the MPI-IO library is MPICH2-1.4.1p1,
and the parallel file system is OrangeFS 2.8.6. Among
the available nodes, we select eight as computing nodes,
eight as HServers, and four as SServers. Both HServers
and SServers are accessed through an OrangeFS parallel
file system respectively. By default, data is striped over
file servers with a 64KB striping unit size. In general, the
larger the capacity of an SServer, the better the I/O per-
formance. To avoid the overestimation of performance
improvement, we set the data size on SServers as 20%
of the application file size.

We use the popular benchmark IOR [48], HPIO [49],
and a real application [50] to evaluate the proposed
data placement scheme. First, we show the efficiency of
the static region-level data placement policy (S-CARL)
when the application’s workload is known. We compare
S-CARL with two other static counterparts: RANDOM
and ORIGINAL. RANDOM distributes file regions on
underlying HServers or SServers randomly. ORIGINAL
places file regions only on HServers, which results in
the worst-case system performance. Second, we evaluate
the efficiency of the dynamic region-level data placement
policy (D-CARL) by comparing it with RANDOM and
S-CARL when we have no knowledge about the work-
loads.
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Fig. 5: I/O throughputs with varying request sizes under
the uniform random workload.

6.2 Evaluation on Static Region-Level Data Place-
ment

6.2.1 IOR Benchmark

To simulate different I/O patterns, we use IOR to gen-
erate two kinds of workloads. One workload generates
uniform random requests by using the default imple-
mentation of IOR. The other generates a Zipfian distri-
bution by modifying the default implementation of IOR.
With such access patterns, one can see the impact of
skewness in workload on the performance behavior of
S-CARL.

Varying Request Sizes: We run IOR with request sizes of
8KB, 16KB, 32KB, and 256KB, respectively. The number
of processes is fixed to 32. Each process is responsible for
accessing its own part of a 10GB shared file, and contin-
uously issues requests with random offsets. Fig. 5 shows
the I/O performance under the uniform workload with
various data placement schemes. For read requests, both
S-CARL and RANDOM can improve the original I/O
throughput by adding SSDs to the parallel I/O system.
S-CARL improves read performance of ORIGINAL by
18.8%, 15.3%, 12.1% and 11.7%, respectively, in terms of
different request sizes. With a larger request size, the I/O
throughput improves because serving larger requests on
SServers leads to higher I/O bandwidth. Compared with
RANDOM, S-CARL has a similar performance behavior.
This is because with a uniform workload the regions
selected by S-CARL nearly bring the same performance
gain as RANDOM. Under this case, S-CARL nearly
degrades to RANDOM. The write test shows similar
results.

Fig. 6 shows the I/O performance comparison un-
der the Zipfian workload. S-CARL can improve read
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Fig. 6: I/O throughputs with varying request sizes under
the Zipfian random workload.

performance by 278.7%, 205.1%, 148.4% and 80.9%,
while RANDOM only improves the I/O performance
by 29.3%, 26.1%, 22.6% and 16.0%. These results show
that, as the request size increases, both S-CARL and
RANDOM provide better performance compared to the
results with a uniform workload. However, S-CARL has
a significant performance improvement over RANDOM.
This is because S-CARL places the most frequently ac-
cessed data on SSDs while RANDOM randomly selects
data; thus, S-CARL can obtain more performance bene-
fits. The write test yields similar results. In the compari-
son with ORIGINAL, S-CARL increases the throughput
by 127.4%, 118.9%, 94.8% and 73.7%, respectively. Com-
pared to RANDOM, S-CARL shows 88.1%, 82.3%, 65.6%
and 51.0% improvements. However, S-CARL provides
a more modest improvement in writes. This is because
SSDs favor reads over writes.

Since S-CARL is unable to make significant perfor-
mance improvement for the uniform random workload,
we only focus on the workload with Zipfian distribution.

Varying Process Numbers: To show how the number
of process affects I/O performance, we run IOR with
16 to 256 processes and the request size is fixed to
16KB. Fig. 7a shows the results of read performance with
respect to Zipfian workloads. Similar to the previous test,
S-CARL improves the overall bandwidth from 107.2% to
139.7%. As the number of processes increases, the I/O
bandwidth first increases and then decreases, this is due
to the fact that each HServer needs to serve requests from
more processes and the competition among processes
impedes the whole I/O progress. Fig. 7a shows another
improvement of S-CARL: when the number of processes
increases, the performance gain of S-CARL increases
as well. In other words, S-CARL has better scalability
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Fig. 7: I/O throughputs with varying number of pro-
cesses under the Zipfian random workload.

and hence are able to handle more concurrent I/O
processes. Additionally, this figure shows that S-CARL is
more effective than RANDOM, and shows performance
improvements of 74.2%, 81.9%, 96.7%, 94.5% and 73.2%
respectively. The performance trend is similar for write
requests, as shown in Fig. 7b.

Varying SSD Sizes Generally the capacity of SServers is
smaller than that of HServers and could be smaller than
the I/O working set size of the application. To show the
impacts of SSD space on the I/O performance, we run
IOR by varying data size ratios of HServers to SServers
from 4:1 to 2:1.

Fig. 8 shows the I/O throughputs for read and write
operations. Similar to previous results, S-CARL outper-
forms RANDOM and ORIGINAL. S-CARL has perfor-
mance improvements up to 278.7%, 356.4% and 450.8%,
respectively, over the original I/O system performance
in terms of different sizes of SServers. With the increased
size of SServers, the I/O bandwidth improves because
more high-cost data regions can be placed on and benefit
from SServers. However, increasing the size of SServers
will not substantially improve performance when high-
cost regions are already stored on SServers.

6.2.2 HPIO Benchmark
HPIO is a program designed by Northwestern Univer-
sity and Sandia National Laboratories to systematically
evaluate parallel I/O system performance [49]. This
benchmark can generate various data access patterns by
changing three parameters: region count, region spacing,
and region size, which indicate the number of requests,
the distance between two requests, and the request size,
respectively. In our experiment, the region count is 4096,
the region size is 128KB, and the region spacing is 32KB.
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Fig. 8: I/O throughputs with varying SSD sizes under
the Zipfian random workload.

We vary the number of processes to emulate access
patterns with different I/O concurrencies. As shown
in Fig. 9, S-CARL can increase both read and write
throughput over ORIGINAL and RANDOM. For reads,
S-CARL outperforms RANDOM by 20.1%, 23.3%, 27.4%,
and 32.7% for 4, 16, 64, and 256 processes, respectively.
As the number of processes increases, the performance
speedup becomes more obvious because SServers have
higher and more stable performance than HServers
when serving a large number of processes. This confirms
the adaptability of S-CARL: when the application’s I/O
accesses have a poorer throughput due to a higher I/O
concurrency (more processes), more benefit is gained by
using S-CARL. For write operations, the performance
shows a similar trend as presented in Fig. 9b.

6.2.3 Real Application
Finally, we evaluate the performance of S-CARL with a
real I/O trace from ’Anonymous LANL App 2’ [50]. This
application has a complex access pattern: each process of
the application sends I/O requests with varied sizes at
different parts of a shared file. Therefore, I/O workloads
on different regions of the file show distinctive access
characteristics. We replay the data accesses of the appli-
cation according to the I/O trace to simulate the same
data access scenario.

Fig. 10 shows the I/O throughput result. S-CARL
obtains 108.5% and 69.3% performance improvement
compared to ORIGINAL and RANDOM respectively.
Although S-CARL can improve performance, the im-
provement is not as substantial as that of IOR under
the Zipfian workload. This is because only a small
part of the requests have different sizes while most of
the requests in Zipfian workload have various access



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2636837, IEEE
Transactions on Parallel and Distributed Systems

SUBMISSION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

0

50

100

150

200

250

4 16 64 256

I/O
 T

hr
ou

gh
pu

t (
M

B/
s)

Number of Processes

ORIGINAL RANDOM S-CARL

(a) Throughput for read

0

50

100

150

200

250

4 16 64 256

I/O
 T

hr
ou

gh
pu

t (
M

B/
s)

Number of Processes

ORIGINAL RANDOM S-CARL

(b) Throughput for write

Fig. 9: Throughputs of HPIO with varying numbers of
processes.
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Fig. 10: I/O throughputs of LANL App2.

frequencies, which means that the region costs are not
as skewed as those of Zipfian workload. However, the
results indicate that S-CARL is an effective performance
optimization method for applications with complex I/O
access patterns.

6.3 Evaluation on Dynamic Region-Level Data
Placement
We conduct experiments to show that the dynamic
region-level data placement policy can improve I/O
system performance, which verifies the need of data mi-
gration when the I/O workload changes and is unknown
in advance. We compare D-CARL with RANDOM and
S-CARL and omit ORIGINAL since ORIGINAL is the
worst case.

6.3.1 The IOR Benchmark
We ran IOR with the Zipfian workload since it shows
strong temporal locality and benefits the dynamic data
migration.

We first run IOR with requests in different sizes of
8KB, 64KB, 512KB, and 4MB. As usual, the process
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Fig. 11: I/O throughputs with varying request sizes.

number is fixed to 32. The corresponding I/O through-
puts are shown in Fig. 11. Compared with RANDOM,
D-CARL obtains 37.1%-157.5% additional performance
improvements with respect to the different request sizes.
We can see that S-CARL is the ideal case since it assumes
the access patterns are known in advance. However,
while D-CARL is not as good as S-CARL, the perfor-
mance gap between them is not large.

We also vary the number of processes. We run IOR
with 8, 32, and 128 processes, and set the request size
as 512KB. Fig. 12 describes the results of read and
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Fig. 12: I/O throughputs with varying numbers of pro-
cesses.
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Fig. 13: Throughputs of HPIO with various numbers of
processes.

write requests. Similar to the previous test, D-CARL
is better than RANDOM but worse than S-CARL. D-
CARL obtains 39.4%-63.2% performance improvements
over RANDOM. Compared with S-CARL, D-CARL only
suffers the performance degradation at most 15.6 %. This
result shows that D-CARL is very effective to improve
I/O performance even the workload is unknown in
advance.

6.3.2 The HPIO Benchmark

We set the region count to 4096, the region size to
16KB, and the region spacing is 32kB. We vary the
number of processes from 16 to 256. Fig. 13 shows the
results. Similar to the IOR tests, D-CARL shows better
performance than RANDOM but poorer performance
than S-CARL. As the workload does not exhibit strong
locality, the improvements obtained by D-CARL are not
very significant. However, D-CARL still can outweigh
RANDOM by 4.1%, 4.3%, 3.3%, and 4.8% respectively.
Compared to the ideal case of S-CARL, D-CARL is closed
to it and shows moderate performance.

6.3.3 Real Application

Finally, we evaluate the performance of D-CARL with
the real application ’Anonymous LANL App 2’. As
shown in Fig. 14, we find that D-CARL obtains 10.9%
performance improvement compared to RANDOM. The
improvements are not as significant as those of IOR.
This is because the workload exhibits weaker locality
than IOR so that the data migration policy brings less
performance benefits.

0

20

40

60

80

100

120

140

160

180

I/O
 T

hr
ou

gh
pu

t (
M

B/
S)

ORIGINAL RANDOM S-CARL

Fig. 14: Performance of LANL App2 under D-CARL.
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Fig. 15: Performance overhead.

6.4 Overhead Analysis
While the gains due to data placement are promising,
CARL could incur some potential overhead on resource
utilization.

6.4.1 Metadata Space Overhead
As described, to maintain data consistency, the region
map table (RMT) is used in the I/O middleware to track
data location on underlying servers. Furthermore, a re-
gion gain table RGT is used to determine the proper data
placement. These two key tables would incur additional
space overhead. In our implementation, the region size
is fixed as 64MB. So for a 100GB PFS file, there are up to
1600 region entries in total. Since each entry in RMT is of
several bytes, we assume 128 bytes for each, so the total
size of RMT would be (1600 * 256) bytes, which is 0.4MB.
Thus, the metadata space overhead is 0.4MB/100GB,
which is less than 0.001% and even negligible for data
sized in TB.

6.4.2 Performance Overhead
In S-CARL, I/O Collector uses IOSIG to collect trace
files during the application’s first run. Previous work
shows the overhead of IOSIG is very low [45] and this
observation is also applied to our case. Since in our
design the pattern analysis and planning are carried
out only once in off-line fashion, the CPU and memory
overhead is also acceptable for most HPC computing
systems.

In D-CARL, some additional modules, such as those
for collecting access information and constructing mi-
gration plan, could also incur performance overhead.
To evaluate it, we run IOR with random workloads, so
that the system would run additional modules without
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making actual data migration. The process number is
fixed to 32, and the request size is varied from 8KB to
64KB. Fig. 15 demonstrates the introduced overhead is
negligible.

7 CONCLUSIONS

Parallel I/O systems are widely used to mask the huge
gap between CPU performance and disk drive perfor-
mance. However, they may exhibit poor performance
for certain I/O patterns. Newer solid state drives (SSD)
provide a possible hardware solution to the I/O system
bottleneck. Due to the excellent performance but high
cost of SSD, building parallel I/O systems with hybrid
SSD-HDD file server is a promising approach to address
the I/O performance issue.

In this paper, we propose CARL, a cost-aware region-
level data placement scheme, to speed up the I/O per-
formance for hybrid parallel I/O systems. This strat-
egy provides fine-grained region-level data placement
optimization, which is highly suitable for applications
with non-uniform data access patterns. CARL includes a
static policy S-CARL and a dynamic policy D-CARL. For
applications whose I/O access patterns are completely
known, S-CARL calculates the region costs within the en-
tire workload duration, and uses a static data placement
scheme to selectively place regions on the appropriate
servers. To adapt to applications whose access patterns
are unknown in advance, D-CARL uses a dynamic data
placement scheme which migrates data among different
servers within each time window.
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